Inductive Bias Extraction and Matching for LLM Prompts

dc.contributor.authorAngel, Christian M.
dc.contributor.authorFerraro, Francis
dc.date.accessioned2025-09-18T14:22:17Z
dc.date.issued2025-08-14
dc.description.abstractThe active research topic of prompt engineering makes it evident that LLMs are sensitive to small changes in prompt wording. A portion of this can be ascribed to the inductive bias that is present in the LLM. By using an LLM's output as a portion of its prompt, we can more easily create satisfactory wording for prompts. This has the effect of creating a prompt that matches the inductive bias in model. Empirically, we show that using this Inductive Bias Extraction and Matching strategy improves LLM Likert ratings used for classification by up to 19% and LLM Likert ratings used for ranking by up to 27%.
dc.description.urihttp://arxiv.org/abs/2508.10295
dc.format.extent15 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2ddq8-iu0s
dc.identifier.urihttps://doi.org/10.48550/arXiv.2508.10295
dc.identifier.urihttp://hdl.handle.net/11603/40221
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUMBC Interactive Robotics and Language Lab
dc.subjectComputer Science - Computation and Language
dc.titleInductive Bias Extraction and Matching for LLM Prompts
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2413-9368

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2508.10295v1.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format