Tissue engineering the retinal ganglion cell nerve fiber layer

dc.contributor.authorKador, Karl E.
dc.contributor.authorMontero, Ramon B.
dc.contributor.authorVenugopalan, Praseeda
dc.contributor.authorHertz, Jonathan
dc.contributor.authorZindell, Allison N.
dc.contributor.authorValenzuela, Daniel A.
dc.contributor.authorUddin, Mohammed S.
dc.contributor.authorLavik, Erin
dc.contributor.authorMuller, Kenneth J.
dc.contributor.authorAndreopoulos, Fotios M.
dc.contributor.authorGoldberg, Jeffrey L.
dc.date.accessioned2025-06-17T14:46:36Z
dc.date.available2025-06-17T14:46:36Z
dc.date.issued2013-06-01
dc.description.abstractRetinal degenerative diseases, such as glaucoma and macular degeneration, affect millions of people worldwide and ultimately lead to retinal cell death and blindness. Cell transplantation therapies for photoreceptors demonstrate integration and restoration of function, but transplantation into the ganglion cell layer is more complex, requiring guidance of axons from transplanted cells to the optic nerve head in order to reach targets in the brain. Here we create a biodegradable electrospun (ES) scaffold designed to direct the growth of retinal ganglion cell (RGC) axons radially, mimicking axon orientation in the retina. Using this scaffold we observed an increase in RGC survival and no significant change in their electrophysiological properties. When analyzed for alignment, 81% of RGCs were observed to project axons radially along the scaffold fibers, with no difference in alignment compared to the nerve fiber layer of retinal explants. When transplanted onto retinal explants, RGCs on ES scaffolds followed the radial pattern of the host retinal nerve fibers, whereas RGCs transplanted directly grew axons in a random pattern. Thus, the use of this scaffold as a cell delivery device represents a significant step towards the use of cell transplant therapies for the treatment of glaucoma and other retinal degenerative diseases.
dc.description.sponsorshipWe gratefully acknowledge support from the NEI RC1EY020297 JLG NIH center grant P30 EY014801 and an unrestricted grant to the University of Miami from Research to Prevent Blindness Inc JLG is the Walter G Ross Distinguished Chair in Ophthalmic Research
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0142961213001968
dc.format.extent15 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2w5fk-d48f
dc.identifier.citationKador, Karl E., Ramon B. Montero, Praseeda Venugopalan, Jonathan Hertz, Allison N. Zindell, Daniel A. Valenzuela, Mohammed S. Uddin, et al. "Tissue Engineering the Retinal Ganglion Cell Nerve Fiber Layer". Biomaterials 34, no. 17 (1 June 2013): 4242–50. https://doi.org/10.1016/j.biomaterials.2013.02.027.
dc.identifier.urihttps://doi.org/10.1016/j.biomaterials.2013.02.027
dc.identifier.urihttp://hdl.handle.net/11603/39059
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Chemical, Biochemical & Environmental Engineering Department
dc.relation.ispartofUMBC College of Engineering and Information Technology Dean's Office
dc.rightsCreative Commons Attribution Non-Commercial No Derivatives License
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
dc.subjectElectrospinning
dc.subjectRetina
dc.subjectGlaucoma
dc.subjectGanglion Cell
dc.titleTissue engineering the retinal ganglion cell nerve fiber layer
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-0644-744X

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms449248.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format