RIS-Empowered Satellite-Aerial-Terrestrial Networks With PD-NOMA

Date

2024-04-25

Department

Program

Citation of Original Publication

Liu, Rui, Kefeng Guo, Xingwang Li, Kapal Dev, Sunder Ali Khowaja, Theodoros A. Tsiftsis, and Houbing Song. “RIS-Empowered Satellite-Aerial-Terrestrial Networks With PD-NOMA.” IEEE Communications Surveys & Tutorials, 2024, 1–1. https://doi.org/10.1109/COMST.2024.3393612.

Rights

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract

Satellite-aerial-terrestrial network (SATN) is considered as a promising architecture for sixth-generation (6G) wireless communication networks to achieve seamless coverage, flexible wireless access, and high data rate. Moreover, non-orthogonal multiple access (NOMA), and reconfigurable intelligent surface (RIS) can significantly increase spectrum and energy efficiency. Recently, the integration of these two technologies and SATN has attracted a lot of attention both in academia and industry. This survey provides a comprehensive overview of RIS-empowered SATN with NOMA. In particular, the rudimentary knowledge of SATN, NOMA scheme, and RIS technology is presented. Then, the motivations for investigating the NOMA-RIS-assisted SATN are discussed. In addition, we introduce the three usage modes of RIS, two scenarios of NOMA-RIS, and the path loss model of NOMA-RIS-assisted SATN. Next, the system performance is analyzed for a case study. Besides, a comprehensive overview of resource allocation in NOMA-RIS-assisted SATN is provided, where theoretical and artificial intelligence-based methods are compared and analyzed. Moreover, physical layer security and covert communication are selected as two representative security techniques to be discussed in NOMA-RIS-aided SATN. Furthermore, the combination of other emerging technologies with NOMA-RIS-assisted SATN is investigated. Finally, this survey provides a detailed discussion of the main challenges and open issues that need to be deeply investigated from a practical point of view, including channel modeling, channel estimation, deployment strategies, and backhaul control.