Spitzer’s Last Look at Extragalactic Explosions: Long-term Evolution of Interacting Supernovae





Citation of Original Publication

Szalai, Tamás et al. Spitzer's Last Look at Extragalactic Explosions: Long-term Evolution of Interacting Supernovae. The Astrophysical Journal 919 (Sept. 17, 2021), no. 1. https://iopscience.iop.org/article/10.3847/1538-4357/ac0e2b


This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0



Here we present new, yet final, mid-infrared (mid-IR) data for supernovae (SNe) based on measurements with the Spitzer Space Telescope. Comparing our recent 3.6 and 4.5 μm photometry with previously published mid-IR and further multiwavelength data sets, we were able to draw some conclusions about the origin and heating mechanism of the dust in these SNe or in their environments, as well as about possible connection with circumstellar matter (CSM) originating from pre-explosion mass-loss events in the progenitor stars. We also present new results regarding both certain SN classes and single objects. We highlight the mid-IR homogeneity of SNe Ia-CSM, which may be a hint of their common progenitor type and of their basically uniform circumstellar environments. Regarding single objects, it is worth highlighting the late-time interacting Type Ib SNe 2003gk and 2004dk, for which we present the first-ever mid-IR data, which seem to be consistent with clues of ongoing CSM interaction detected in other wavelength ranges. Our current study suggests that long-term mid-IR follow-up observations play a key role in a better understanding of both pre- and post-explosion processes in SNe and their environments. While Spitzer is not available anymore, the expected unique data from the James Webb Space Telescope, as well as long-term near-IR follow-up observations of dusty SNe, can bring us closer to the hidden details of this topic.