B-TGAT: A Bi-directional Temporal Graph Attention Transformer for Clustering Multivariate Spatiotemporal Data

dc.contributor.authorNji, Francis Ndikum
dc.contributor.authorJaneja, Vandana
dc.contributor.authorWang, Jianwu
dc.date.accessioned2025-10-22T19:57:49Z
dc.date.issued2025-09-16
dc.description.abstractClustering high-dimensional multivariate spatiotemporal climate data is challenging due to complex temporal dependencies, evolving spatial interactions, and non-stationary dynamics. Conventional clustering methods, including recurrent and convolutional models, often struggle to capture both local and global temporal relationships while preserving spatial context. We present a time-distributed hybrid U-Net autoencoder that integrates a Bi-directional Temporal Graph Attention Transformer (B-TGAT) to guide efficient temporal clustering of multidimensional spatiotemporal climate datasets. The encoder and decoder are equipped with ConvLSTM2D modules that extract joint spatial--temporal features by modeling localized dynamics and spatial correlations over time, and skip connections that preserve multiscale spatial details during feature compression and reconstruction. At the bottleneck, B-TGAT integrates graph-based spatial modeling with attention-driven temporal encoding, enabling adaptive weighting of temporal neighbors and capturing both short and long-range dependencies across regions. This architecture produces discriminative latent embeddings optimized for clustering. Experiments on three distinct spatiotemporal climate datasets demonstrate superior cluster separability, temporal stability, and alignment with known climate transitions compared to state-of-the-art baselines. The integration of ConvLSTM2D, U-Net skip connections, and B-TGAT enhances temporal clustering performance while providing interpretable insights into complex spatiotemporal variability, advancing both methodological development and climate science applications.
dc.description.sponsorshipThis work is supported by HDR Institute: HARP - Harnessing Data and Model Revolution in the Polar Regions (OAC-2118285).
dc.description.urihttp://arxiv.org/abs/2509.13202
dc.format.extent11 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2qod6-tg7c
dc.identifier.urihttps://doi.org/10.48550/arXiv.2509.13202
dc.identifier.urihttp://hdl.handle.net/11603/40500
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC GESTAR II
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.relation.ispartofUMBC Center for Real-time Distributed Sensing and Autonomy
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Center for Accelerated Real Time Analysis
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUMBC Big Data Analytics Lab
dc.subjectComputer Science - Artificial Intelligence
dc.subjectComputer Science - Machine Learning
dc.subjectUMBC Multi-Data (MData) Lab
dc.subjectUMBC Cybersecurity Institute
dc.titleB-TGAT: A Bi-directional Temporal Graph Attention Transformer for Clustering Multivariate Spatiotemporal Data
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0009-6559-4659
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2509.13202v1.pdf
Size:
674.94 KB
Format:
Adobe Portable Document Format