STAR: A Scalable Self-taught Learning Framework for Older Adults’ Activity Recognition

Date

2021-10-08

Department

Program

Citation of Original Publication

Ramamurthy, Sreenivasan Ramasamy et al.; STAR: A Scalable Self-taught Learning Framework for Older Adults’ Activity Recognition; 2021 IEEE International Conference on Smart Computing (SMARTCOMP), 8 October, 2021; https://doi.org/10.1109/SMARTCOMP52413.2021.00037

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
© 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract

Activity Recognition (AR) in older adults living with Neurocognitive disorders caused by diseases such as Alzheimer’s is still a challenging research problem. The inherent natural variation in performing an activity increases while repeating the same activity for an older adult, let alone the variation introduced when another older adult performs the same activity. Moreover, the challenges in acquiring the labeled data while preserving the privacy, availability of annotators with domain knowledge, aversion towards cameras even for a minimal amount of time for ground truth data collection, and psychological and mental health status make AR for older adults challenging. In this paper, we postulate a self-taught learning-based approach that helps recognize activities with variations that are not being directly seen during the training phase. We hypothesize that the features extracted using deep architectures from unlabeled data instances can learn general underlying representations of activities efficiently and help improve activity classification in a supervised setting, although the data instances in labeled data do not follow the generative distribution of that of unlabeled data. We posit real data from a retirement community center using our in-house SenseBox infrastructure and survey-based assessments concurrently done by a clinical evaluator to study the relationship between activities and functional/behavioral health of older adults. We evaluate our proposed self-taught learning-based approach, STAR, using the presented in-house Alzheimer’s Activity Recognition (AAR) dataset acquired in a real-world deployment in 25 homes which outperforms the state-of-the-art algorithm by about 20%.