Towards sustainable AI: a comprehensive framework for Green AI

dc.contributor.authorTabbakh, Abdulaziz
dc.contributor.authorAl Amin
dc.contributor.authorIslam, Mahbubul
dc.contributor.authorMahmud, G. M. Iqbal
dc.contributor.authorChowdhury, Imranul Kabir
dc.contributor.authorMukta, Md Saddam Hossain
dc.date.accessioned2024-12-11T17:01:57Z
dc.date.available2024-12-11T17:01:57Z
dc.date.issued2024-11-15
dc.description.abstractThe rapid advancement of artificial intelligence (AI) has brought significant benefits across various domains, yet it has also led to increased energy consumption and environmental impact. This paper positions Green AI as a crucial direction for future research and development. It proposes a comprehensive framework for understanding, implementing, and advancing sustainable AI practices. We provide an overview of Green AI, highlighting its significance and current state regarding AI’s energy consumption and environmental impact. The paper explores sustainable AI techniques, such as model optimization methods, and the development of efficient algorithms. Additionally, we review energy-efficient hardware alternatives like tensor processing units (TPUs) and field-programmable gate arrays (FPGAs), and discuss strategies for designing and operating energy-efficient data centers. Case studies in natural language processing (NLP) and Computer Vision illustrate successful implementations of Green AI practices. Through these efforts, we aim to balance the performance and resource efficiency of AI technologies, aligning them with global sustainability goals.
dc.description.urihttps://link.springer.com/article/10.1007/s43621-024-00641-4
dc.format.extent14 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2hzue-nbux
dc.identifier.citationTabbakh, Abdulaziz, Lisan Al Amin, Mahbubul Islam, G. M. Iqbal Mahmud, Imranul Kabir Chowdhury, and Md Saddam Hossain Mukta. “Towards Sustainable AI: A Comprehensive Framework for Green AI.” Discover Sustainability 5, no. 1 (November 15, 2024): 408. https://doi.org/10.1007/s43621-024-00641-4.
dc.identifier.urihttps://doi.org/10.1007/s43621-024-00641-4
dc.identifier.urihttp://hdl.handle.net/11603/37011
dc.language.isoen_US
dc.publisherSpringer
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Student Collection
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial intelligence
dc.subjectSustainable computing
dc.subjectArtificial Intelligence
dc.subjectGPU
dc.titleTowards sustainable AI: a comprehensive framework for Green AI
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0007-4547-5025

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s43621024006414.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format