Analyzing Social Media Texts and Images to Assess the Impact of Flash Floods in Cities

dc.contributor.authorBasnyat, Bipendra
dc.contributor.authorAnam, Amrita
dc.contributor.authorSingh, Neha
dc.contributor.authorGangopadhyay, Aryya
dc.contributor.authorRoy, Nirmalya
dc.date.accessioned2018-09-04T17:39:15Z
dc.date.available2018-09-04T17:39:15Z
dc.date.issued2017-06-15
dc.description© 2017 IEEE; 2017 IEEE International Conference on Smart Computing (SMARTCOMP)en_US
dc.description.abstractComputer Vision and Image Processing are emerging research paradigms. The increasing popularity of social media, micro- blogging services and ubiquitous availability of high-resolution smartphone cameras with pervasive connectivity are propelling our digital footprints and cyber activities. Such online human footprints related with an event-of-interest, if mined appropriately, can provide meaningful information to analyze the current course and pre- and post- impact leading to the organizational planning of various real-time smart city applications. In this paper, we investigate the narrative (texts) and visual (images) components of Twitter feeds to improve the results of queries by exploiting the deep contexts of each data modality. We employ Latent Semantic Analysis (LSA)-based techniques to analyze the texts and Discrete Cosine Transformation (DCT) to analyze the images which help establish the cross-correlations between the textual and image dimensions of a query. While each of the data dimensions helps improve the results of a specific query on its own, the contributions from the dual modalities can potentially provide insights that are greater than what can be obtained from the individual modalities. We validate our proposed approach using real Twitter feeds from a recent devastating flash flood in Ellicott City near the University of Maryland campus. Our results show that the images and texts can be classified with 67\% and 94\% accuracies respectively.en_US
dc.description.sponsorshipThis work is partially supported by the NSF CNS grant 1640625.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/7946987/en_US
dc.format.extent6 PAGESen_US
dc.genreconference papers and proceedings preprintsen_US
dc.identifierdoi:10.13016/M2280527C
dc.identifier.citationB. Basnyat, A. Anam, N. Singh, A. Gangopadhyay and N. Roy, "Analyzing Social Media Texts and Images to Assess the Impact of Flash Floods in Cities," 2017 IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, 2017, pp. 1-6.en_US
dc.identifier.uri10.1109/SMARTCOMP.2017.7946987
dc.identifier.urihttp://hdl.handle.net/11603/11202
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please contact the author.
dc.subjectUrban areasen_US
dc.subjectTwitteren_US
dc.subjectSensorsen_US
dc.subjectData miningen_US
dc.subjectFloodsen_US
dc.subjectSemanticsen_US
dc.subjectMobile Pervasive & Sensor Computing Laben_US
dc.titleAnalyzing Social Media Texts and Images to Assess the Impact of Flash Floods in Citiesen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SmartSys_Bipen.pdf
Size:
629.85 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: