Iterative constrained energy minimization convolutional neural network for hyperspectral image classification

dc.contributor.authorXue, Bai
dc.contributor.authorShang, Xiaodi
dc.contributor.authorZhong, Shengwei
dc.contributor.authorHu, Peter F.
dc.contributor.authorChang, Chein-I
dc.date.accessioned2019-10-08T15:08:22Z
dc.date.available2019-10-08T15:08:22Z
dc.date.issued2019-05-14
dc.descriptionEvent: SPIE Defense + Commercial Sensing, 2019, Baltimore, Maryland, United Statesen_US
dc.description.abstractIn hyperspectral image classification, how to jointly take care of spectral and spatial information received considerable interest lately, and many spectral-spatial classification approaches have been proposed. Unlike spectral-spatial classifications which are developed from traditional aspect, iterative constrained energy minimization (ICEM) and iterative target-constrained interference-minimized classifier (ITCIMC) approaches are developed from subpixel detection and mixed pixel classification point of view, and generally performs better than existing spectral-spatial approaches in terms of several measurements, such as accuracy rate and precision rate. Recently, convolutional neural networks (CNNs) have been successfully applied to visual imagery classification and have received great attention in hyperspectral image classification, due to the outstanding ability of CNN to capture spatial information. This paper extends ICEM to iterative constrained energy minimization convolution neural network approach for hyperspectral image classification. In order to capture spatial information, instead of Gaussian filter, CNN is utilized to generate binary pixelwise classification map for constrained energy minimization (CEM) detection results, and CNN classification map is feedbacked into hyperspectral bands, and then CEM detection is reprocessed in an iteration manner. Since CNN can reduce the performance of precision rate, a background recovery procedure is designed, to recover background detection map from CEM detection map and add it into CEM result as a new detection map.en_US
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/10986/109861L/Iterative-constrained-energy-minimization-convolutional-neural-network-for-hyperspectral-image/10.1117/12.2519046.full?SSO=1en_US
dc.format.extent9 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m2lbwu-worc
dc.identifier.citationBai Xue, Xiaodi Shang, Shengwei Zhong, Peter F. Hu, and Chein-I Chang "Iterative constrained energy minimization convolutional neural network for hyperspectral image classification", Proc. SPIE 10986, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV, 109861L (14 May 2019); https://doi.org/10.1117/12.2519046en_US
dc.identifier.urihttps://doi.org/10.1117/12.2519046
dc.identifier.urihttp://hdl.handle.net/11603/14980
dc.language.isoen_USen_US
dc.publisherSPIEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.subjectHyperspectral image classificationen_US
dc.subjectiterative constrained energy minimization (ICEM)en_US
dc.subjectconvolutional neural network (CNN)en_US
dc.subjectband selection and nonlinear expansion (BSNE)en_US
dc.titleIterative constrained energy minimization convolutional neural network for hyperspectral image classificationen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
109861L.pdf
Size:
448.24 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: