Sim-to-Real Multirotor Controller Single-shot Learning

dc.contributor.authorMirtaba, Mohammad
dc.contributor.authorOveissi, Parham
dc.contributor.authorGoel, Ankit
dc.date.accessioned2024-11-14T15:18:40Z
dc.date.available2024-11-14T15:18:40Z
dc.date.issued2024-10-04
dc.description.abstractThis paper demonstrates the sim-to-real capabilities of retrospective cost optimization-based adaptive control for multirotor stabilization and trajectory-tracking problems. First, a continuous-time version of the widely used discrete-time retrospective control adaptive control algorithm is developed. Next, a computationally inexpensive 12-degree-of-freedom model of a multirotor is used to learn the control system in a simulation environment with a single trajectory. Finally, the performance of the learned controller is verified in a complex and realistic multirotor model in simulation and with a physical quadcopter in a waypoint command and a helical trajectory command.
dc.description.urihttp://arxiv.org/abs/2410.03815
dc.format.extent7 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2pba0-3t9r
dc.identifier.urihttps://doi.org/10.48550/arXiv.2410.03815
dc.identifier.urihttp://hdl.handle.net/11603/36948
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mechanical Engineering Department
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International CC BY-NC-SA 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectComputer Science - Systems and Control
dc.subjectUMBC Estimation, Control, and Learning Laboratory (ECLL).
dc.subjectElectrical Engineering and Systems Science - Systems and Control
dc.titleSim-to-Real Multirotor Controller Single-shot Learning
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-9326-0319
dcterms.creatorhttps://orcid.org/0000-0002-4146-6275

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2410.03815v1.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format