Understanding the Logical and Semantic Structure of Large Documents
No Thumbnail Available
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2017-04-27
Type of Work
Department
Program
Citation of Original Publication
Muhammad Mahbubur Rahman, Understanding the Logical and Semantic Structure of Large Documents, SDM 2016 Doctoral Forum, SIAM International Conference on Data Mining ,2017,https://ebiquity.umbc.edu/paper/html/id/786/Understanding-the-Logical-and-Semantic-Structure-of-Large-Documents
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Up-to-the-minute language understanding approaches are mostly focused on small documents such as newswire articles, blog posts, product reviews and discussion forum en- tries. Understanding and extracting information from large documents such as legal documents, reports, proposals, technical manuals and research articles is still a challenging task. The reason behind this challenge is that the documents may be multi-themed, complex and cover diverse topics. For example, business opportunities may contain information on the background of the business, product or service of the business, plan, team management, financial or budget related data, competitors, logistics, compliance, legal information and boilerplate content that is repeated across documents. The content can be split into multiple files or aggregated into one large file. As a result, the content in the whole document may have different structures and formats. Furthermore, the information is expressed in different forms such as paragraphs of text, headers, data forms, tables, images, mathematical equations, lists or a nested combination of these structures.