Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

dc.contributor.authorHuemmrich, Karl
dc.contributor.authorGamon, John A.
dc.contributor.authorTweedie, Craig E.
dc.contributor.authorCampbell, Petya Entcheva
dc.contributor.authorLandis, David R.
dc.contributor.authorMiddleton, Elizabeth M.
dc.date.accessioned2023-07-11T17:00:28Z
dc.date.available2023-07-11T17:00:28Z
dc.date.issued2013-04-24
dc.description.abstractNon-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013±0.001, 0.0018±0.0002, and 0.0012±0.0001 C mol ⁻¹ absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/6507561en_US
dc.format.extent11 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2m93n-43wf
dc.identifier.citationK. F. Huemmrich, J. A. Gamon, C. E. Tweedie, P. K. E. Campbell, D. R. Landis and E. M. Middleton, "Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 2, pp. 265-275, April 2013, doi: 10.1109/JSTARS.2013.2253446.en_US
dc.identifier.urihttps://doi.org/10.1109/JSTARS.2013.2253446
dc.identifier.urihttp://hdl.handle.net/11603/28580
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Geography and Environmental Systems Department
dc.relation.ispartofUMBC GESTAR II
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleArctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Propertiesen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0003-4148-9108en_US
dcterms.creatorhttps://orcid.org/0000-0002-0505-4951en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Arctic_Tundra_Vegetation_Functional_Types_Based_on_Photosynthetic_Physiology_and_Optical_Properties.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: