Biclustering a dataset using photonic quantum computing

dc.contributor.authorBorle, Ajinkya
dc.contributor.authorBhave, Ameya
dc.date.accessioned2024-07-12T14:57:15Z
dc.date.available2024-07-12T14:57:15Z
dc.date.issued2024-05-28
dc.description.abstractBiclustering is a problem in machine learning and data mining that seeks to group together rows and columns of a dataset according to certain criteria. In this work, we highlight the natural relation that quantum computing models like boson and Gaussian boson sampling (GBS) have to this problem. We first explore the use of boson sampling to identify biclusters based on matrix permanents. We then propose a heuristic that finds clusters in a dataset using Gaussian boson sampling by (i) converting the dataset into a bipartite graph and then (ii) running GBS to find the densest sub-graph(s) within the larger bipartite graph. Our simulations for the above proposed heuristics show promising results for future exploration in this area.
dc.description.urihttp://arxiv.org/abs/2405.18622
dc.format.extent32 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m29dxy-jdyq
dc.identifier.urihttp://hdl.handle.net/11603/34864
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.rightsATTRIBUTION 4.0 INTERNATIONAL
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Machine Learning
dc.subjectComputer Science - Emerging Technologies
dc.subjectPhysics - Optics
dc.subjectQuantum Physics
dc.titleBiclustering a dataset using photonic quantum computing
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-3055-279X

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2405.18622v1.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format