Volume-Wise Task fMRI Decoding with Deep Learning:Enhancing Temporal Resolution and Cognitive Function Analysis
| dc.contributor.author | Wu, Yueyang | |
| dc.contributor.author | Yang, Sinan | |
| dc.contributor.author | Wang, Yanming | |
| dc.contributor.author | He, Jiajie | |
| dc.contributor.author | Pathan, Muhammad Mohsin | |
| dc.contributor.author | Qiu, Bensheng | |
| dc.contributor.author | Wang, Xiaoxiao | |
| dc.date.accessioned | 2025-04-23T20:31:01Z | |
| dc.date.available | 2025-04-23T20:31:01Z | |
| dc.date.issued | 2025-03-02 | |
| dc.description.abstract | In recent years,the application of deep learning in task functional Magnetic Resonance Imaging (tfMRI) decoding has led to significant advancements. However,most studies remain constrained by assumption of temporal stationarity in neural activity,resulting in predominantly block-wise analysis with limited temporal resolution on the order of tens of seconds. This limitation restricts the ability to decode cognitive functions in detail. To address these limitations, this study proposes a deep neural network designed for volume-wise identification of task states within tfMRI data,thereby overcoming the constraints of conventional methods. Evaluated on Human Connectome Project (HCP) motor and gambling tfMRI datasets,the model achieved impressive mean accuracy rates of 94.0% and 79.6%,respectively. These results demonstrate a substantial enhancement in temporal resolution,enabling more detailed exploration of cognitive processes. The study further employs visualization algorithms to investigate dynamic brain mappings during different tasks,marking a significant step forward in deep learning-based frame-level tfMRI decoding. This approach offers new methodologies and tools for examining dynamic changes in brain activities and understanding the underlying cognitive mechanisms. | |
| dc.description.sponsorship | This study was supported by National Science and Technology Innovation 2030 Major Program 2022ZD0204801. Funding supports from the National Key R&D Program of China (grant 2022YFB4702700, G.-Z.Y.) | |
| dc.description.uri | http://arxiv.org/abs/2503.01925 | |
| dc.format.extent | 8 pages | |
| dc.genre | journal articles | |
| dc.genre | preprints | |
| dc.identifier | doi:10.13016/m2xkmj-esqw | |
| dc.identifier.uri | https://doi.org/10.48550/arXiv.2503.01925 | |
| dc.identifier.uri | http://hdl.handle.net/11603/38012 | |
| dc.language.iso | en_US | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Student Collection | |
| dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
| dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
| dc.subject | Computer Science - Machine Learning | |
| dc.subject | Computer Science - Computer Vision and Pattern Recognition | |
| dc.subject | Quantitative Biology - Neurons and Cognition | |
| dc.subject | Computer Science - Human-Computer Interaction | |
| dc.title | Volume-Wise Task fMRI Decoding with Deep Learning:Enhancing Temporal Resolution and Cognitive Function Analysis | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0009-0009-7956-8355 |
Files
Original bundle
1 - 1 of 1
