ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization
Loading...
Links to Files
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2020-04-18
Type of Work
Department
Program
Citation of Original Publication
Sean Martin et al., ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization, Journal of Statistical Software Articles, Vol 93 (2020), Issue 1, 10.18637/jss.v093.i01
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Subjects
Abstract
Manifold optimization appears in a wide variety of computational problems in the applied sciences. In recent statistical methodologies such as sufficient dimension reduction and regression envelopes, estimation relies on the optimization of likelihood functions over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang, Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides a framework and state of the art algorithms to optimize real-valued objective functions over commonly used matrix-valued Riemannian manifolds. This article presents ManifoldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables users to access functionality in ROPTLIB through R so that optimization problems can easily be constructed, solved, and integrated into larger R codes. Computationally intensive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed through R. We illustrate the practical use of ManifoldOptim through several motivating examples involving dimension reduction and envelope methods in regression.