Predicting Malware Attributes from Cybersecurity Texts

dc.contributor.authorRoy, Arpita
dc.contributor.authorPark, Youngja
dc.contributor.authorPan, Shimei
dc.date.accessioned2019-10-22T15:34:13Z
dc.date.available2019-10-22T15:34:13Z
dc.date.issued2019-06
dc.descriptionProceedings of NAACL-HLT 2019, Minneapolis, Minnesota, June 2 - June 7, 2019.
dc.description.abstractText analytics is a useful tool for studying malware behavior and tracking emerging threats. The task of automated malware attribute identification based on cybersecurity texts is very challenging due to a large number of malware attribute labels and a small number of training instances. In this paper, we propose a novel feature learning method to leverage diverse knowledge sources such as small amount of human annotations, unlabeled text and specifications about malware attribute labels. Our evaluation has demonstrated the effectiveness of our method over the state-of-the-art malware attribute prediction systems.en_US
dc.description.urihttps://www.aclweb.org/anthology/N19-1293/en_US
dc.format.extent5 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m2nudh-qg7h
dc.identifier.citationArpita Roy, Youngja Park, Shimei Pan, Predicting Malware Attributes from Cybersecurity Texts, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), DOI: 10.18653/v1/N19-1293en_US
dc.identifier.urihttp://dx.doi.org/10.18653/v1/N19-1293
dc.identifier.urihttp://hdl.handle.net/11603/15951
dc.language.isoen_USen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectmalware attributesen_US
dc.subjectcybersecurity texten_US
dc.subjecttraining instancesen_US
dc.titlePredicting Malware Attributes from Cybersecurity Textsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
N19-1293.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: