A pilot study to understand the relationship between cortical arousals and leg movements during sleep
dc.contributor.author | Bansal, Kanika | |
dc.contributor.author | Garcia, Javier | |
dc.contributor.author | Feltch, Cody | |
dc.contributor.author | Earley, Christopher | |
dc.contributor.author | Robucci, Ryan | |
dc.contributor.author | Banerjee, Nilanjan | |
dc.contributor.author | Brooks, Justin | |
dc.date.accessioned | 2022-08-12T18:04:37Z | |
dc.date.available | 2022-08-12T18:04:37Z | |
dc.date.issued | 2022-07-25 | |
dc.description.abstract | Leg movements during sleep occur in patients with sleep pathology and healthy individuals. Some (but not all) leg movements during sleep are related to cortical arousals which occur without conscious awareness but have a significant effect of sleep fragmentation. Detecting leg movements during sleep that are associated with cortical arousals can provide unique insight into the nature and quality of sleep. In this study, a novel leg movement monitor that uses a unique capacitive displacement sensor and 6-axis inertial measurement unit, is used in conjunction with polysomnography to understand the relationship between leg movement and electroencephalogram (EEG) defined cortical arousals. In an approach that we call neuro-extremity analysis, directed connectivity metrics are used to interrogate causal linkages between EEG and leg movements measured by the leg movement sensors. The capacitive displacement measures were more closely related to EEG-defined cortical arousals than inertial measurements. Second, the neuro-extremity analysis reveals a temporally evolving connectivity pattern that is consistent with a model of cortical arousals in which brainstem dysfunction leads to near-instantaneous leg movements and a delayed, filtered signal to the cortex leading to the cortical arousal during sleep. | en_US |
dc.description.sponsorship | Tis work was performed at Johns Hopkins Medical Center, the Kennedy Krieger Institute, University of Maryland, Baltimore County, and Tanzen Medical Inc. Tis work was supported by a Grant from the National Science Foundation, Small Business Innovation Research Phase I Grant, No: 1819626. | en_US |
dc.description.uri | https://www.nature.com/articles/s41598-022-16697-z | en_US |
dc.format.extent | 9 pages | en_US |
dc.genre | journal articles | en_US |
dc.identifier | doi:10.13016/m2cx14-ca5s | |
dc.identifier.citation | Bansal, K., Garcia, J., Feltch, C. et al. A pilot study to understand the relationship between cortical arousals and leg movements during sleep. Sci Rep 12, 12685 (2022). https://doi.org/10.1038/s41598-022-16697-z | en_US |
dc.identifier.uri | https://doi.org/10.1038/s41598-022-16697-z | |
dc.identifier.uri | http://hdl.handle.net/11603/25385 | |
dc.language.iso | en_US | en_US |
dc.publisher | Nature | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | en_US |
dc.rights | Public Domain Mark 1.0 | * |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | * |
dc.title | A pilot study to understand the relationship between cortical arousals and leg movements during sleep | en_US |
dc.type | Text | en_US |