Efficient Leaf Disease Classification and Segmentation using Midpoint Normalization Technique and Attention Mechanism

dc.contributor.authorTaufik, Enam Ahmed
dc.contributor.authorParsa, Antara Firoz
dc.contributor.authorMostafa, Seraj Al Mahmud
dc.date.accessioned2025-07-09T17:55:41Z
dc.date.issued2025-05-27
dc.description2025 IEEE International Conference on Image Processing (ICIP), 14- 17 September, Anchorage, Alaska
dc.description.abstractEnhancing plant disease detection from leaf imagery remains a persistent challenge due to scarce labeled data and complex contextual factors. We introduce a transformative two-stage methodology, Mid Point Normalization (MPN) for intelligent image preprocessing, coupled with sophisticated attention mechanisms that dynamically recalibrate feature representations. Our classification pipeline, merging MPN with Squeeze-and-Excitation (SE) blocks, achieves remarkable 93% accuracy while maintaining exceptional class-wise balance. The perfect F1 score attained for our target class exemplifies attention's power in adaptive feature refinement. For segmentation tasks, we seamlessly integrate identical attention blocks within U-Net architecture using MPN-enhanced inputs, delivering compelling performance gains with 72.44% Dice score and 58.54% IoU, substantially outperforming baseline implementations. Beyond superior accuracy metrics, our approach yields computationally efficient, lightweight architectures perfectly suited for real-world computer vision applications.
dc.description.urihttp://arxiv.org/abs/2505.21316
dc.format.extent6 pages
dc.genreconference papers and proceedings
dc.genrepostprints
dc.identifierdoi:10.13016/m2us0q-g9q6
dc.identifier.urihttps://doi.org/10.48550/arXiv.2505.21316
dc.identifier.urihttp://hdl.handle.net/11603/39333
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Information Systems Department
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUMBC Big Data Analytics Lab
dc.subjectElectrical Engineering and Systems Science - Image and Video Processing
dc.subjectComputer Science - Computer Vision and Pattern Recognition
dc.titleEfficient Leaf Disease Classification and Segmentation using Midpoint Normalization Technique and Attention Mechanism
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2505.21316v1.pdf
Size:
5.87 MB
Format:
Adobe Portable Document Format