Investigation of HIV-1 Conserved Components for Genomic Recognition

dc.contributor.advisorSummers, Michael F
dc.contributor.authorSwanson, Canessa Jordan
dc.contributor.departmentChemistry & Biochemistry
dc.contributor.programBiochemistry
dc.date.accessioned2022-02-09T15:52:24Z
dc.date.available2022-02-09T15:52:24Z
dc.date.issued2020-01-01
dc.description.abstractGenomic recognition for HIV-1 is an intricate process that requires the coordination of distinct intermolecular interactions between the 5'-leader (5'-L) of the viral genome and the RNA-binding nucleocapsid (NC) domain of the Gag polyprotein. Structural and biophysical studies in combination with in vivo packaging experiments identified the minimal packaging unit within the 5'-L, termed the ?CES (core encapsidation signal), which adopts a unique tandem three-way junction structure and is predicted to function as a nucleation site for Gag multimerization. Identification of the initial high affinity binding sites within the lower three-way junction of the ?CES, coined the ?3WJ-1 revealed a potential mechanism of selective RNA packaging. However, these findings, along with the vast majority of HIV-1 structural biology, stem from investigating the widely utilized laboratory strain known as NL4-3. As a means of interpreting the possibility of a structure-function relationship for the conserved 5'- L the present studies investigate another variant of HIV-1, MAL. Sequence alignment of the ?CES region of the two strains indicates a ninety-one percent sequence homology,while additional evaluation of the ?3WJ-1 illustrated higher sequence identity at ninety- five percent. Isothermal titration calorimetry (ITC) experiments identified that the binding isotherms for both strains are similar, indicating the sequence variations between MAL and NL4-3 do not perturb the mechanism of action for NC binding. Through the utilization of solution-state nuclear magnetic resonance (NMR), nucleotide-specific 2H-labeling, and residual dipolar coupling (RDC) measurements the three-dimensional structure of the MAL_?3WJ-1 was characterized, leading to a more comprehensive understanding of the complexities behind selective packaging of the viral genome.
dc.formatapplication:pdf
dc.genredissertations
dc.identifierdoi:10.13016/m2ktdn-qp7f
dc.identifier.other12390
dc.identifier.urihttp://hdl.handle.net/11603/24165
dc.languageen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Chemistry & Biochemistry Department Collection
dc.relation.ispartofUMBC Theses and Dissertations Collection
dc.relation.ispartofUMBC Graduate School Collection
dc.relation.ispartofUMBC Student Collection
dc.sourceOriginal File Name: Swanson_umbc_0434D_12390.pdf
dc.subjectHIV-1
dc.subjectITC
dc.subjectNMR
dc.subjectRNA
dc.titleInvestigation of HIV-1 Conserved Components for Genomic Recognition
dc.typeText
dcterms.accessRightsAccess limited to the UMBC community. Item may possibly be obtained via Interlibrary Loan through a local library, pending author/copyright holder's permission.
dcterms.accessRightsThis item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please see http://aok.lib.umbc.edu/specoll/repro.php or contact Special Collections at speccoll(at)umbc.edu

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Swanson_umbc_0434D_12390.pdf
Size:
14.71 MB
Format:
Adobe Portable Document Format