GraphDAC: A Graph-Analytic Approach to Dynamic Airspace Configuration
Loading...
Links to Files
Author/Creator
Author/Creator ORCID
Date
2023-07-29
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
CC0 1.0 Universal (CC0 1.0) Public Domain Dedication
Subjects
Abstract
The current National Airspace System (NAS) is reaching capacity due to increased air traffic, and is based on outdated pre-tactical planning. This study proposes a more dynamic airspace configuration (DAC) approach that could increase throughput and accommodate fluctuating traffic, ideal for emergencies. The proposed approach constructs the airspace as a constraints-embedded graph, compresses its dimensions, and applies a spectral clustering-enabled adaptive algorithm to generate collaborative airport groups and evenly distribute workloads among them. Under various traffic conditions, our experiments demonstrate a 50% reduction in workload imbalances. This research could ultimately form the basis for a recommendation system for optimized airspace configuration. Code available at https://github.com/KeFenge2022/GraphDAC.git.