RAGged Edges: The Double-Edged Sword of Retrieval-Augmented Chatbots

dc.contributor.authorFeldman, Philip
dc.contributor.authorFoulds, James
dc.contributor.authorPan, Shimei
dc.date.accessioned2025-02-13T17:56:15Z
dc.date.available2025-02-13T17:56:15Z
dc.date.issued2024-06-12
dc.description.abstractLarge language models (LLMs) like ChatGPT demonstrate the remarkable progress of artificial intelligence. However, their tendency to hallucinate -- generate plausible but false information -- poses a significant challenge. This issue is critical, as seen in recent court cases where ChatGPT's use led to citations of non-existent legal rulings. This paper explores how Retrieval-Augmented Generation (RAG) can counter hallucinations by integrating external knowledge with prompts. We empirically evaluate RAG against standard LLMs using prompts designed to induce hallucinations. Our results show that RAG increases accuracy in some cases, but can still be misled when prompts directly contradict the model's pre-trained understanding. These findings highlight the complex nature of hallucinations and the need for more robust solutions to ensure LLM reliability in real-world applications. We offer practical recommendations for RAG deployment and discuss implications for the development of more trustworthy LLMs.
dc.description.urihttp://arxiv.org/abs/2403.01193
dc.format.extent9 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2oubd-4jnn
dc.identifier.urihttps://doi.org/10.48550/arXiv.2403.01193
dc.identifier.urihttp://hdl.handle.net/11603/37705
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC College of Engineering and Information Technology Dean's Office
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectComputer Science - Computation and Language
dc.subjectComputer Science - Artificial Intelligence
dc.titleRAGged Edges: The Double-Edged Sword of Retrieval-Augmented Chatbots
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-0935-4182
dcterms.creatorhttps://orcid.org/0000-0002-5989-8543
dcterms.creatorhttps://orcid.org/0000-0001-6164-6620

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2403.01193v3.pdf
Size:
606.27 KB
Format:
Adobe Portable Document Format