PseudoNAM: A Pseudo Value Based Interpretable Neural Additive Model for Survival Analysis

dc.contributor.authorRahman, Md Mahmudur
dc.contributor.authorPurushotham, Sanjay
dc.date.accessioned2022-02-02T15:50:52Z
dc.date.available2022-02-02T15:50:52Z
dc.date.issued2021
dc.descriptionAAAI 2021 Fall Symposium on Human Partnership with Medical AI: Design, Operationalization, and Ethics (AAAI-HUMAN 2021) Virtual Event, November 4-6, 2021.
dc.description.abstractDeep learning models have achieved the start-of-the-art per formance in survival analysis as they can handle censor ing while learning complex nonlinear hidden representa tions directly from the raw data. However, the covariate ef fects on survival probabilities are difficult to explain using deep learning models. To address this challenge, we propose PseudoNAM - an interpretable model which uses pseudo val ues to efficiently handle censoring and uses neural additive networks to capture the nonlinearity in the covariates of the survival data. In particular, PseudoNAM uses neural addi tive models to jointly learn a linear combination of neural networks corresponding to each covariate and identifies the effect of the individual covariate on the output, and thus, is inherently interpretable. We show that our PseudoNAM out puts can be used in other survival models such as random survival forests to obtain improved survival prediction per formance. Our experiments on three real-world survival anal ysis datasets demonstrate that our proposed models achieve similar or better performance (in terms of C-index and Brier scores) than the state-of-the-art survival methods. We show case that PseudoNAM provides overall feature importance scores and feature-level interpretations (covariate effect on survival risk) for survival predictions at different time points.en_US
dc.description.sponsorshipThis work is partially supported by grant IIS–1948399 from the US National Science Foundation and grant 80NSSC21M0027 from the National Aeronautics and Space Administration.en_US
dc.description.urihttp://ceur-ws.org/Vol-3068/short3.pdfen_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m2v8bz-yvug
dc.identifier.citation"Rahman, Md Mahmudur and Sanjay Purushotham. PseudoNAM: A Pseudo Value Based Interpretable Neural Additive Model for Survival Analysis. AAAI 2021 Fall Symposium on Human Partnership with Medical AI: Design, Operationalization, and Ethics (AAAI-HUMAN 2021) Virtual Event, November 4-6, 2021."en_US
dc.identifier.urihttp://hdl.handle.net/11603/24115
dc.language.isoen_USen_US
dc.publisherCEURen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titlePseudoNAM: A Pseudo Value Based Interpretable Neural Additive Model for Survival Analysisen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
short3.pdf
Size:
681.21 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: