Biocompatible Nanocapsules for Self-Healing Dental Resins and Bone Cements

Date

2022-08-31

Department

Program

Citation of Original Publication

Menikheim, Sydney et al. "Biocompatible Nanocapsules for Self-Healing Dental Resins and Bone Cements." ACS Omega (2022). https://doi.org/10.1021/acsomega.2c02080

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Subjects

Abstract

Bone cements and dental resins are methacrylatebased materials that have been in use for many years, but their failure rates are quite high with essentially all dental resins failing within 10 years and 25% of all prosthetic implants will undergo aseptic loosening. There are significant healthcare costs and impacts on quality of life of patients. Self-healing bone cements and resins could improve the lifespan of these systems, reduce costs, and improve patient outcomes, but they have been limited by efficacy and toxicity of the components. To address these issues, we developed a self-healing system based on a dual nanocapsule system. Two nanocapsules were synthesized, one containing an initiator and one encapsulating a monomer, both in polyurethane shells. The monomer used was triethylene glycol dimethacrylate. The initiator capsules synthesized contained benzoyl peroxide and butylated hydroxytoluene. Resins containing the nanocapsules were tested in tension until failure, and the fractured surfaces were placed together. 33% of the samples showed self-healing behaviors to the point where they could be reloaded and tested in tension. Furthermore, the capsules and their components showed good biocompatibility with Caco-2 cells, a human epithelial cell line suggesting that they would be well tolerated in vivo.