YieldPredict: A Crop Yield Prediction Framework for Smart Farms

Author/Creator ORCID





Citation of Original Publication

Nitu Kedarmal Choudhary, Sai Sree Laya Chukkapalli, Sudip Mittal, Maanak Gupta, Mahmoud Abdelsalam, and Anupam Joshi, YieldPredict: A Crop Yield Prediction Framework for Smart Farms, IEEE International Conference on Big Data 2020


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


In recent years, machine learning approaches are gaining popularity with the advent of big data. The massive amount of data generated, when served as an input to machine learning approaches, provides useful insights. Adoption of these approaches in the agricultural sector has immense potential to increase crop productivity and quality. In this paper, we analyze the crop data collected from an agriculture site in Rajasthan, India, that includes both Rabi and Kharif cropping patterns. In addition, we utilize a smart farm ontology that contains concepts and properties related to the agricultural domain. We link the collected data and our smart farm ontology to populate a knowledge graph. We utilize the generated knowledge graph to provide structural information and aggregate data by using SPARQL queries. The aggregated data is further used by our machine learning models to predict the crop yield to benefit farmers and various stakeholders. We also analyze and compare our results obtained for various machine learning models used.