Reconstitution of the Arginyltransferase (ATE₁) Iron-Sulfur Cluster

Department

Program

Citation of Original Publication

Van, V., Smith, A.T. (2023). Reconstitution of the Arginyltransferase (ATE₁) Iron-Sulfur Cluster. In: Kashina, A.S. (eds) Protein Arginylation. Methods in Molecular Biology, vol 2620. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2942-0_23.

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Access to this item will begin on 04/04/2025

Subjects

Abstract

As global regulators of eukaryotic homeostasis, arginyltransferases (ATE1s) have essential functions within the cell. Thus, the regulation of ATE1 is paramount. It was previously postulated that ATE1 was a hemoprotein and that heme was an operative cofactor responsible for enzymatic regulation and inactivation. However, we have recently shown that ATE1 instead binds an iron-sulfur ([Fe-S]) cluster that appears to function as an oxygen sensor to regulate ATE1 activity. As this cofactor is oxygen-sensitive, purification of ATE1 in the presence of O₂ results in cluster decomposition and loss. Here we describe an anoxic chemical reconstitution protocol to assemble the [Fe-S] cluster cofactor in Saccharomyces cerevisiae ATE1 (ScATE1) and Mus musculus ATE1 isoform 1 (MmATE1-1).