The optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture

Author/Creator ORCID





Citation of Original Publication

Marsafari, Monireh; Lahiji, Habibollah Samizadeh; Rabiei, Babak; Mehrabi, Ali Ashraf; Lv, Yongkun; Xu, Peng; The optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture; Nova Biologica Reperta 2020, 7(2): 133-144;


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)



Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles both in plants and in the treatment of different types of human diseases. For this purpose, specific naringenin biosynthesis genes from different origins were selected and introduced after comparative expression profiling in Y. lipolytica. This research indicated that chs plays the main role in the production of naringenin, so the increase copy number of this gene in each construct was investigated. The HPLC results confirmed that the construct with 5 copy numbers of chs resulted in 7.14 fold increase of naringenin extracellular titer to 90.16 mg/L in shake flask cultures. The results reported in this study demonstrated that sufficient knowledge of genes involved in the specific biosynthesis pathway, synthetic gene pathway and using Y. lipolytica as a capable and cheap host could help bioengineers to produce significant amounts of pharmaceutical components.