Satellite detection of soil moisture related water stress impacts on ecosystem productivity using the MODIS-based photochemical reflectance index

dc.contributor.authorHe, Mingzhu
dc.contributor.authorKimball, John S.
dc.contributor.authorRunning, Steven
dc.contributor.authorBallantyne, Ashley
dc.contributor.authorGuan, Kaiyu
dc.contributor.authorHuemmrich, Karl
dc.date.accessioned2024-02-05T19:53:44Z
dc.date.available2024-02-05T19:53:44Z
dc.date.issued2016-08-23
dc.description.abstractSatellite remote sensing provides continuous observations of vegetation properties that can be used to estimate global terrestrial ecosystem gross primary production (GPP). The Photochemical Reflectance Index (PRI) has been shown to be sensitive to vegetation photosynthetic light use efficiency (LUE), GPP and canopy water-stress. Here, we use the NASA EOS MODIS (Moderate Resolution Imaging Spectroradiometer) based PRI with eddy covariance CO₂ flux measurements and meteorological observations from 20 tower sites representing major plant functional type (PFT) classes within the continental USA (CONUS) to assess GPP sensitivity to soil moisture related water stress. The sPRI (scaled PRI) metric derived using MODIS band 13 as a reference channel (sPRI₁₃) shows generally higher correspondence with tower GPP estimates than other potential MODIS reference bands. The sPRI₁₃observations were used as a proxy for soil moisture related water supply constraints to LUE within a satellite data driven terrestrial carbon flux model to estimate GPP (GPPPRI). The GPPPRI calculations show generally favorable correspondence with tower GPP estimates (0.457 ≤ R² ≤ 0.818), except for lower GPPPRI performance over evergreen needleleaf forest (ENF) sites. A regional model sensitivity analysis using the sPRI₁₃ as a water supply proxy indicated that water restrictions limit GPP over more than 21% of the CONUS domain, particularly in drier climate areas where atmospheric moisture deficits (VPD) alone are insufficient to represent both atmosphere demand and water supply controls affecting productivity. Our results indicate strong potential of the MODIS sPRI₁₃ to represent soil moisture related water supply controls influencing photosynthesis, with enhanced (1-km resolution) delineation of these processes closer to the scale of in situ tower observations. These observations may provide an effective tool for characterizing sub-grid spatial heterogeneity in soil moisture related controls that inform coarser scale observations and estimates determined from other satellite observations and earth system models.
dc.description.sponsorshipThis study was performed at the University of Montana with funding provided by the National Aeronautics and Space Administration (NNX15AB59G, NNX14AI50G). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911). We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval, Environment Canada and U.S. Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California – Berkeley and the University of Virginia.
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0034425716303224
dc.genrejournal articles
dc.genrepreprints
dc.identifier.citationHe, Mingzhu, John S. Kimball, Steven Running, Ashley Ballantyne, Kaiyu Guan, and Fred Huemmrich. “Satellite Detection of Soil Moisture Related Water Stress Impacts on Ecosystem Productivity Using the MODIS-Based Photochemical Reflectance Index.” Remote Sensing of Environment 186 (December 1, 2016): 173–83. https://doi.org/10.1016/j.rse.2016.08.019.
dc.identifier.urihttps://doi.org/10.1016/j.rse.2016.08.019
dc.identifier.urihttp://hdl.handle.net/11603/31556
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC GESTAR II
dc.relation.ispartofUMBC Geography and Environmental Systems Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleSatellite detection of soil moisture related water stress impacts on ecosystem productivity using the MODIS-based photochemical reflectance index
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-4148-9108

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1-s2.0-S0034425716303224-am.pdf
Size:
865.62 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1-s2.0-S0034425716303224-mmc1.docx
Size:
19.27 KB
Format:
Microsoft Word XML

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: