Unsupervised Radio Scene Analysis Using Neural Expectation Maximization

dc.contributor.authorChen, Hao
dc.contributor.authorKim, Seung-Jun
dc.date.accessioned2023-02-28T18:48:03Z
dc.date.available2023-02-28T18:48:03Z
dc.date.issued2023-01-24
dc.descriptionMILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 28 November 2022 - 02 December 2022en_US
dc.description.abstractAn unsupervised learning-based blind RF scene analysis method is proposed. The method can analyze a complex radio scene containing a mixture of different transmission types and estimate the constituent signals with associated channel vectors from multi-antenna measurements. A deep neural network is trained to learn the unique time-frequency patterns of various signal types. The channels, noise powers, and encodings input to the neural network are estimated in a maximum likelihood framework via an expectation-maximization algorithm. Numerical tests using scenes constructed from real RF measurements verify the effectiveness of the proposed method.en_US
dc.description.urihttps://ieeexplore.ieee.org/abstract/document/10017594en_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2sdcm-tvvd
dc.identifier.citationH. Chen and S. -J. Kim, "Unsupervised Radio Scene Analysis Using Neural Expectation Maximization," MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, MD, USA, 2022, pp. 368-373, doi: 10.1109/MILCOM55135.2022.10017594.en_US
dc.identifier.urihttps://doi.org/10.1109/MILCOM55135.2022.10017594
dc.identifier.urihttp://hdl.handle.net/11603/26901
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.titleUnsupervised Radio Scene Analysis Using Neural Expectation Maximizationen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-5504-4997en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised_Radio_Scene_Analysis_Using_Neural_Expectation_Maximization.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: