An Interdisciplinary Review of Commonsense Reasoning and Intent Detection
Links to Files
Author/Creator
Author/Creator ORCID
Date
Type of Work
Department
Program
Citation of Original Publication
Rights
Attribution 4.0 International
Abstract
This review explores recent advances in commonsense reasoning and intent detection, two key challenges in natural language understanding. We analyze 28 papers from ACL, EMNLP, and CHI (2020-2025), organizing them by methodology and application. Commonsense reasoning is reviewed across zero-shot learning, cultural adaptation, structured evaluation, and interactive contexts. Intent detection is examined through open-set models, generative formulations, clustering, and human-centered systems. By bridging insights from NLP and HCI, we highlight emerging trends toward more adaptive, multilingual, and context-aware models, and identify key gaps in grounding, generalization, and benchmark design.
