An Interdisciplinary Review of Commonsense Reasoning and Intent Detection

dc.contributor.authorSakib, Md Nazmus
dc.date.accessioned2025-07-09T17:54:53Z
dc.date.issued2025-06-16
dc.description.abstractThis review explores recent advances in commonsense reasoning and intent detection, two key challenges in natural language understanding. We analyze 28 papers from ACL, EMNLP, and CHI (2020-2025), organizing them by methodology and application. Commonsense reasoning is reviewed across zero-shot learning, cultural adaptation, structured evaluation, and interactive contexts. Intent detection is examined through open-set models, generative formulations, clustering, and human-centered systems. By bridging insights from NLP and HCI, we highlight emerging trends toward more adaptive, multilingual, and context-aware models, and identify key gaps in grounding, generalization, and benchmark design.
dc.description.urihttp://arxiv.org/abs/2506.14040
dc.format.extent7 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2pgmh-g5aj
dc.identifier.urihttps://doi.org/10.48550/arXiv.2506.14040
dc.identifier.urihttp://hdl.handle.net/11603/39232
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Student Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Computation and Language
dc.subjectComputer Science - Human-Computer Interaction
dc.titleAn Interdisciplinary Review of Commonsense Reasoning and Intent Detection
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0003-8282-3931

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2506.14040v1.pdf
Size:
226.57 KB
Format:
Adobe Portable Document Format