What is the Point? Evaluating the Structure, Color, and Semantic Traits of Computer Vision Point Clouds of Vegetation
Loading...
Links to Files
Collections
Author/Creator ORCID
Date
2017-04-09
Type of Work
Department
Program
Citation of Original Publication
Dandois, Jonathan P., Matthew Baker, Marc Olano, Geoffrey G. Parker, and Erle C. Ellis. “What Is the Point? Evaluating the Structure, Color, and Semantic Traits of Computer Vision Point Clouds of Vegetation.” Remote Sensing 9, no. 4 (April 2017): 355. https://doi.org/10.3390/rs9040355.
Rights
Attribution 4.0 International
Abstract
Remote sensing of the structural and spectral traits of vegetation is being transformed by structure from motion (SFM) algorithms that combine overlapping images to produce three-dimensional (3D) red-green-blue (RGB) point clouds. However, much remains unknown about how these point clouds are used to observe vegetation, limiting the understanding of the results and future applications. Here, we examine the content and quality of SFM point cloud 3D-RGB fusion observations. An SFM algorithm using the Scale Invariant Feature Transform (SIFT) feature detector was applied to create the 3D-RGB point clouds of a single tree and forest patches. The fusion quality was evaluated using targets placed within the tree and was compared to fusion measurements from terrestrial LIDAR (TLS). K-means clustering and manual classification were used to evaluate the semantic content of SIFT features. When targets were fully visible in the images, SFM assigned color in the correct place with a high accuracy (93%). The accuracy was lower when targets were shadowed or obscured (29%). Clustering and classification revealed that the SIFT features highlighted areas that were brighter or darker than their surroundings, showing little correspondence with canopy objects like leaves or branches, though the features showed some relationship to landscape context (e.g., canopy, pavement). Therefore, the results suggest that feature detectors play a critical role in determining how vegetation is sampled by SFM. Future research should consider developing feature detectors that are optimized for vegetation mapping, including extracting elements like leaves and flowers. Features should be considered the fundamental unit of SFM mapping, like the pixel in optical imaging and the laser pulse of LIDAR. Under optimal conditions, SFM fusion accuracy exceeded that of TLS, and the two systems produced similar representations of the overall tree shape. SFM is the lower-cost solution for obtaining accurate 3D-RGB fusion measurements of the outer surfaces of vegetation, the critical zone of interaction between vegetation, light, and the atmosphere from leaf to canopy scales.